Product Description

Hydraulic Cylinder Jack Professional Hydraulic Lifting Cylinder Series Ram Stroke: 50mm Effective Area: 85cm For Building and Bridge
 

PRODUCT PHOTO

Product Photo

PRODUCT DETAILS

Product Details

 

PRODUCT ADVANTAGES

Product Advantages

Small and easy to carry, capable of working in a narrow space.    
The surface is made of baking paint, high corrosion resistance. 
Reduces pollution and extends the life of the hydraulic cylinder.      
The cylinder has 2 holes for fixed use, and can also be used upside down or sideways.

 

FAQ

 Customer Questions & Answers

Q: What's your MOQ?

A:  Our MOQ is 100units per model for GTL/OEM brand.

 

Q: What's your payment terms?

A: We could accept L/C sight, T/T and Paypal.

 

Q: What's the delivery time?

A: We could deliver the goods within 60 days after order confirmed.

Q: Is the price on this page your final price?

A: The price on this page is only for your reference. We hope you can inquiry the bottom price based on your quantity. We also have promotion season and will give discount for new customer.

 

Q: Can I get free samples?

A:  Yes, we could provide free samples,and deliver with freight collected.
 

Company Profile

About Us

After-sales Service: Online Support
Warranty: 1 Year
Type: Hydraulic Jack
Structure: Hydraulic Jack
Capacity (Load): 10-1000t
Power Source: Hydraulic
Samples:
US$ 0.00/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How does a hydraulic ram contribute to controlled and precise movement?

A hydraulic ram plays a crucial role in enabling controlled and precise movement. Here's a detailed explanation:

1. Hydraulic Fluid: Hydraulic rams operate by utilizing hydraulic fluid, which acts as a medium for transmitting force. The fluid is incompressible, allowing force to be evenly distributed throughout the system. This property ensures that the movement of the ram is smooth and consistent, contributing to controlled and precise motion.

2. Flow Control: Hydraulic rams incorporate flow control mechanisms to regulate the rate of fluid flow. Flow control valves, such as throttle valves or flow restrictors, can be used to adjust the speed at which the fluid enters or exits the ram. By controlling the flow rate, the speed of the ram's movement can be precisely managed, enabling controlled and precise motion.

3. Pressure Regulation: The hydraulic pressure within the system directly influences the force output and speed of the hydraulic ram. By controlling the pressure using pressure control valves or regulators, the movement of the ram can be finely tuned. Adjusting the pressure allows for precise control over the force applied by the ram, resulting in controlled and precise movement.

4. Piston and Cylinder Design: The design of the piston and cylinder in a hydraulic ram contributes to controlled and precise movement. The fit between the piston and cylinder is designed to minimize leakage and ensure smooth operation. This tight clearance helps maintain accurate positioning and prevents unwanted movement or drift, allowing for precise control over the ram's motion.

5. Proportional Control Systems: Advanced hydraulic ram systems can incorporate proportional control systems that enable precise movement control. These control systems use sensors and feedback mechanisms to monitor and adjust the position, speed, and force of the ram in real-time. By continuously adapting to changing conditions, the control system ensures precise and accurate movement, even in complex applications.

6. Position Sensing: Hydraulic rams can be equipped with position sensing devices, such as linear transducers or encoders, to provide feedback on the ram's position. This feedback allows for precise positioning of the ram and ensures accurate movement control. The position sensing information can be used in conjunction with control systems to achieve the desired level of precision in the ram's motion.

Through the use of hydraulic fluid, flow control mechanisms, pressure regulation, piston and cylinder design, proportional control systems, and position sensing devices, hydraulic rams contribute to controlled and precise movement. These features make hydraulic rams well-suited for applications that require accurate positioning, gradual motion, or precise force application.

Can hydraulic rams be applied in both mobile and stationary machinery?

Yes, hydraulic rams can be applied in both mobile and stationary machinery. Here's a detailed explanation:

Hydraulic rams are versatile components that find applications in various industries and machinery types. Their ability to generate and transmit high forces makes them suitable for a wide range of mobile and stationary applications.

1. Mobile Machinery: Hydraulic rams are commonly used in mobile machinery, such as construction equipment, agricultural machinery, material handling vehicles, and transportation vehicles. In these applications, hydraulic rams are utilized for tasks such as lifting, pushing, pulling, tilting, and steering. Mobile machinery often requires compact and efficient power systems, and hydraulic rams provide the necessary force multiplication capabilities while being adaptable to different operational conditions.

2. Stationary Machinery: Hydraulic rams are also extensively employed in stationary machinery across various industries. Examples include hydraulic presses, industrial robots, machine tools, hydraulic lifts, and heavy-duty equipment. In stationary machinery, hydraulic rams are utilized for precision positioning, applying controlled force, clamping, bending, or pressing operations. The ability to control and adjust the force, speed, and position of hydraulic rams makes them ideal for applications that require accurate and repeatable motion.

3. Common Applications: Hydraulic rams can be found in a wide range of specific applications. For mobile machinery, this may include the hydraulic cylinders used in excavators to control the boom, arm, and bucket movements. In stationary machinery, hydraulic rams are often employed in hydraulic presses for metal forming, hydraulic clamps for workholding, or hydraulic actuators for precise motion control. The flexibility of hydraulic rams allows for customization to suit specific requirements in diverse industries.

4. Advantages in Both Mobile and Stationary Machinery: The use of hydraulic rams provides several advantages in both mobile and stationary machinery. These include high force output, adjustable force and speed, smooth operation, compact design, reliability, and durability. Hydraulic systems offer efficient power transmission and can be easily integrated into different machinery designs, making them a popular choice in a wide range of applications.

Overall, hydraulic rams can be effectively applied in both mobile and stationary machinery, offering the benefits of force multiplication, precise control, and adaptability to diverse operational requirements.

hydraulic cylinder

Can hydraulic rams be used in construction equipment like bulldozers?

Yes, hydraulic rams are commonly used in construction equipment like bulldozers. Here's a detailed explanation:

1. Blade Control: Bulldozers are equipped with large blades mounted at the front, which are used for various tasks such as pushing and leveling soil, debris, or other materials. Hydraulic rams play a crucial role in controlling the movement of these blades. The hydraulic rams are connected to the bulldozer's hydraulic system and enable the operator to adjust the angle, height, and tilt of the blade. By utilizing hydraulic rams, bulldozer operators can precisely control the blade's position and apply the necessary force for efficient earthmoving and grading operations.

2. Ripper Attachment: Bulldozers often have ripper attachments at the rear of the machine. The ripper is used to break up hard or compacted soil, rocks, or pavement surfaces. Hydraulic rams are utilized to control the movement of the ripper attachment. The rams enable the operator to raise, lower, and angle the ripper, allowing for effective penetration and loosening of the ground. Hydraulic rams provide the necessary force and control to handle tough materials and enhance the bulldozer's versatility in various construction applications.

3. Track System: Bulldozers feature a track system for mobility and traction on rough terrain. Hydraulic rams are integral components of the bulldozer's track system, responsible for controlling the movement and tension of the tracks. The rams allow for adjustments in track tension to optimize the grip and stability of the bulldozer when operating on different ground conditions. By utilizing hydraulic rams in the track system, bulldozers can maneuver efficiently and maintain traction even in challenging construction environments.

4. Hydraulic Power: Hydraulic rams in bulldozers are powered by a hydraulic system that consists of a hydraulic pump, valves, and actuators. The hydraulic system provides the necessary power and control to operate the hydraulic rams effectively. Bulldozers typically have robust hydraulic systems capable of generating high forces, allowing the rams to exert significant pushing or lifting capabilities. The hydraulic power provided by the system enables bulldozers to perform heavy-duty construction tasks with precision and efficiency.

5. Operator Control: Bulldozer operators have control over the hydraulic rams through hydraulic control levers or joysticks in the operator cabin. These controls allow operators to manipulate the position, speed, and force of the hydraulic rams, providing precise control over the blade and ripper attachments. The intuitive and responsive nature of hydraulic controls enhances the operator's ability to perform tasks accurately and efficiently.

In summary, hydraulic rams are extensively used in construction equipment like bulldozers to control the blade and ripper attachments, manage the track system, provide hydraulic power, and offer operator control. The integration of hydraulic rams enhances the performance, versatility, and productivity of bulldozers in various construction and earthmoving applications.

hydraulic cylinder

What are the components and parts of a hydraulic ram?

A hydraulic ram consists of several key components and parts. Here's a detailed explanation:

1. Drive Pipe: The drive pipe is the inlet pipe through which the flowing water enters the hydraulic ram. It is connected to a water source, such as a stream or a river, and carries the water that provides the energy for the hydraulic ram.

2. Delivery Pipe: The delivery pipe is the outlet pipe through which the water is pumped to the desired destination at a higher elevation. It carries the lifted water away from the hydraulic ram.

3. Valve: The valve controls the flow of water within the hydraulic ram. It is responsible for allowing the water to enter the ram during the drive phase and closing to create the water hammer effect during the delivery phase. The valve's opening and closing are crucial for the hydraulic ram's operation.

4. Air Vessel: The air vessel, also known as the air chamber or air dome, is a chamber that contains compressed air. It acts as an accumulator and helps maintain a constant flow of water by absorbing pressure fluctuations during the operation of the hydraulic ram. The compressed air in the air vessel provides a cushioning effect and contributes to the overall efficiency of the ram.

5. Waste Valve: Some hydraulic ram designs include a waste valve. The waste valve is an optional component that allows excess water or air to escape from the hydraulic ram if the pressure becomes too high. It helps protect the ram from damage caused by excessive pressure build-up.

6. Seals and Gaskets: Seals and gaskets are essential components that prevent leakage of water or air from the hydraulic ram. They ensure the proper functioning and efficiency of the ram by maintaining the necessary pressure differentials and preventing loss of energy.

7. Frame and Mounting: The hydraulic ram is typically housed within a sturdy frame or housing that provides support and protection for the components. The frame also serves as a mounting point for installation, securing the ram in the desired location.

8. Control Mechanism (Optional): Some hydraulic ram systems may incorporate a control mechanism, such as a lever or float, to regulate the operation of the ram. This mechanism allows manual or automatic control over the valve opening and closing, providing additional flexibility and adjustability.

These components work together to enable the hydraulic ram to harness the energy of flowing water and pump a portion of that water to a higher elevation without the need for external power sources.

China Best Sales Hydraulic Cylinder Jack Professional Hydraulic Lifting Cylinder Series RAM Stroke: 50mm Effective Area: 85cm for Building and Bridge (38402907)   vacuum pump adapter	China Best Sales Hydraulic Cylinder Jack Professional Hydraulic Lifting Cylinder Series RAM Stroke: 50mm Effective Area: 85cm for Building and Bridge (38402907)   vacuum pump adapter
editor by CX 2023-11-29