Product Description

Products Description                                                                                                   

Product Name

DYT Hydraulic Actuator

Trust(10N)

450~20000

Pull(10N)

310~15000

Stroke(mm)

50~2500mm

Speed(mm/s)

PUSH:25~110mm/s
PULL:35~140mm/s

Power

0.75-15Kw

Voltage

DC12V/24V/48V AC220V/380V

Color

Blue or Black, Customizable

Delivery Time

7~15 days

Warranty Time

1Year

MOQ

1 Set

Electro-hydraulic actuator selection:
There are many models of electro-hydraulic actuators, and there are many irregular models when there are models on the customer's purchase order. This article mainly introduces you to what is the correct and complete model of the electro-hydraulic putter.
Usually, the model of the electro-hydraulic actuator product is defined as follows:

DYT- (structural form) - (connection mode) -(thrust) - (stroke) - (upper limit speed) - (use angle).
The structural form of the electrohydraulic actuator is normally divided into Z (straight) and P (parallel).

In the way of connecting the electro-hydraulic actuator, we have summarized 5 ways:

C (conventional), G (joint bearing), F(flange connection), R (hind ear connection), T (special model).
The thrust of the electro-hydraulic actuator is the unit we normally use is KG (10N)
The stroke unit of the electrohydraulic actuator is mm
The upper limit speed of the electro-hydraulic actuator is mm/s
The angle of use of the electro-hydraulic pusher is divided into 3 types of S (upward), P (parallel), and X (downward).
About the use angle definition of the electro-hydraulic actuators
1, the rod extension direction and the horizontal angle between the positive and negative 15 ° select P
2, the rod is extended upward and the vertical angle is selected within plus or minus 75°.
3, the rod to the bottom, the downward direction, and the vertical angle is selected within plus or minus 75° X

Company Profile                                                                                                          
QIANGLIN HYDRAULIC MACHINERY CO., LTD

QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner.

FAQ:                                                                                                                              
Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 15-30 working days if we don't. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers' questions within 12 hours. Being helpful in
solving customers' problems is always  our goal. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO, CE
IP Rating: IP54
Limit Switch: Built-in
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

hydraulic cylinder

How does a hydraulic ram manage variations in load capacity and weight?

A hydraulic ram employs various mechanisms and design features to effectively manage variations in load capacity and weight. Here's a detailed explanation:

1. Pressure Adjustments: Hydraulic rams can manage variations in load capacity by adjusting the operating pressure. By regulating the pressure within the hydraulic system, the force output of the ram can be controlled. This allows the ram to accommodate different load capacities and weights by adjusting the pressure accordingly. Pressure can be adjusted using pressure control valves or regulators.

2. Piston and Cylinder Design: The design of the piston and cylinder in a hydraulic ram contributes to managing variations in load capacity. The piston area determines the force output of the ram, while the cylinder diameter determines the load-carrying capacity. By selecting the appropriate piston and cylinder sizes, the hydraulic ram can be tailored to handle different load capacities and weights. Larger piston and cylinder sizes are used for heavier loads, while smaller sizes are suitable for lighter loads.

3. Mechanical Advantage: Hydraulic rams can leverage mechanical advantage to manage variations in load capacity and weight. By incorporating mechanical systems such as levers, linkages, or gears, the force applied to the hydraulic ram can be multiplied. This mechanical advantage allows the ram to handle higher load capacities and weights than what the hydraulic pressure alone would be able to achieve.

4. Accumulators: Hydraulic rams can utilize accumulators to manage variations in load capacity. An accumulator is a device that stores hydraulic energy in the form of pressurized fluid. During periods of low demand, excess hydraulic energy can be stored in the accumulator. When there is a sudden increase in load capacity or weight, the stored energy can be released to supplement the hydraulic ram's force output, ensuring smooth operation and efficient management of variations in load.

5. Control Systems: Advanced hydraulic ram systems can incorporate control systems to manage variations in load capacity and weight. These control systems can monitor the load conditions and adjust the hydraulic pressure, flow rate, or other parameters accordingly. By continuously adapting to changes in load, the hydraulic ram can optimize its performance and maintain consistent force output, regardless of variations in load capacity and weight.

6. Safety Features: Hydraulic rams may include safety features to protect against excessive loads or weight. These features can include overload protection mechanisms, such as pressure relief valves or limit switches, which prevent the hydraulic ram from operating beyond its safe load capacity. By incorporating such safety features, hydraulic rams can effectively manage variations in load while ensuring operational safety.

Through pressure adjustments, piston and cylinder design, mechanical advantage, accumulators, control systems, and safety features, hydraulic rams can efficiently manage variations in load capacity and weight. This versatility makes hydraulic rams suitable for a wide range of applications where load variations are encountered.

hydraulic cylinder

How does a hydraulic ram handle variations in environmental conditions?

A hydraulic ram is designed to handle variations in environmental conditions effectively. Here's a detailed explanation:

1. Temperature: Hydraulic rams are designed to operate within a wide temperature range. The hydraulic fluids used in the system are formulated to maintain their viscosity and performance under different temperature conditions. Additionally, hydraulic systems may incorporate temperature control mechanisms, such as coolers or heaters, to regulate the fluid temperature and ensure optimal operation. This enables hydraulic rams to handle variations in temperature without significant impact on their performance.

2. Moisture and Humidity: Hydraulic rams are typically sealed to prevent moisture or humidity from entering the system. Seals and gaskets are used to create a barrier against external contaminants. Additionally, hydraulic systems may include desiccant breathers or moisture-absorbing elements to maintain dry and clean hydraulic fluid. These measures help protect the hydraulic ram from moisture-related issues such as corrosion or reduced lubrication, allowing it to operate reliably in humid environments.

3. Dust and Contaminants: Hydraulic rams are designed to withstand dust and contaminants commonly found in various environments. The use of air filters, hydraulic filters, and breathers helps prevent the ingress of particles into the hydraulic system. Regular maintenance, including filter replacement and system cleaning, ensures the hydraulic ram remains free from excessive contamination. By minimizing the impact of dust and contaminants, hydraulic rams can maintain their performance and longevity even in harsh or dirty environments.

4. Shock and Vibration: Hydraulic rams are built to handle shock and vibration that may occur during operation. Robust construction, including durable materials and proper mounting techniques, helps absorb and dissipate shocks and vibrations. Additionally, hydraulic systems may incorporate dampening elements or accumulators to further minimize the impact of sudden shocks or vibrations. These features enable hydraulic rams to maintain their stability and functionality even in applications subjected to high levels of vibration or shock.

5. Corrosion Resistance: Hydraulic rams are often designed with corrosion-resistant materials, such as stainless steel or corrosion-resistant coatings. This protects the ram from corrosion caused by exposure to moisture, chemicals, or corrosive environments. Proper maintenance, including regular inspection and cleaning, helps identify and address any signs of corrosion, ensuring the hydraulic ram's performance and longevity.

6. Environmental Considerations: In certain applications or industries, hydraulic rams may need to comply with specific environmental regulations. For example, they may need to meet certain standards for noise emissions, leakage prevention, or biodegradable hydraulic fluids. Manufacturers take these considerations into account during the design and production of hydraulic rams to ensure compliance and minimize environmental impact.

By incorporating temperature tolerance, moisture and humidity protection, dust and contaminant prevention, shock and vibration absorption, corrosion resistance, and environmental considerations, hydraulic rams are well-equipped to handle variations in environmental conditions. These design features contribute to the reliability, durability, and performance of hydraulic rams in diverse operating environments.

hydraulic cylinder

Can you explain the purpose and applications of hydraulic rams?

The purpose of hydraulic rams is to pump water from a lower elevation to a higher elevation using the energy of flowing water. They have various applications in different fields. Here's a detailed explanation:

1. Water Supply: Hydraulic rams are commonly used in water supply systems to pump water from a natural water source, such as a river or a stream, to a higher elevation. They can provide a reliable and efficient method of delivering water to areas that are located uphill or at a distance from the water source. This application is particularly useful in rural areas, agricultural settings, and remote locations where access to electricity or conventional pumping systems may be limited.

2. Irrigation: Hydraulic rams play a crucial role in agricultural irrigation. They can be used to pump water from a nearby water source, such as a river or a reservoir, to fields located at higher elevations. By utilizing the energy of flowing water, hydraulic rams eliminate the need for electricity or fuel-powered pumps, making irrigation systems more cost-effective and sustainable.

3. Drainage and Flood Control: Hydraulic rams can also be employed in drainage and flood control systems. They can be used to pump excess water from lower-lying areas to higher elevations or drainage channels. By utilizing the energy of flowing water, hydraulic rams can effectively remove water from flood-prone areas without the need for external power sources.

4. Water Recycling and Treatment: Hydraulic rams are utilized in water recycling and treatment systems. They can pump water from lower treatment stages to higher stages, facilitating the movement of water through different treatment processes. Hydraulic rams provide a sustainable and energy-efficient solution for water treatment facilities.

5. Hydropower Generation: In addition to pumping applications, hydraulic rams can also be used to generate hydropower. By harnessing the energy of flowing water, hydraulic rams can drive turbines or generators to produce electricity. This application is particularly useful in off-grid locations or areas with access to a reliable water source but limited electrical infrastructure.

6. Environmental Applications: Hydraulic rams are employed in various environmental applications, including fish passage systems, water circulation in aquaculture facilities, and water feature installations. Their ability to pump water without external power sources makes them suitable for environmentally sensitive areas.

Overall, hydraulic rams provide a sustainable and efficient solution for pumping water to higher elevations in a wide range of applications. They are particularly beneficial in areas with a natural flow of water and where access to electricity or conventional pumping systems is limited or impractical.

China Good quality 12V 12 Volt 220 V Electric Hydraulic Pump and RAM   wholesaler China Good quality 12V 12 Volt 220 V Electric Hydraulic Pump and RAM   wholesaler
editor by CX 2024-01-24