Product Description

Product Description

Our company can design and produce marine machinery hydraulic cylinders, vehicle engineering hydraulic cylinders, engineering machinery hydraulic cylinders, and metallurgical machinery hydraulic cylinders by ourselves. It has the characteristics of simple structure, reliable operation, convenient disassembly and assembly, easy maintenance, buffer device and various connection methods.
The inner diameter of the cylinder barrel adopts rolling or honing and polishing processing technology to ensure very high dimensional accuracy, geometric accuracy and surface roughness; the cylinder barrel and tailstock ring welding seam is completed using a special cylinder ring seam automatic welding machine, which is 100% ultrasonic Flaw detection, in line with the standard Class I requirements; the exposed surface of the piston rod when it is extended is all chromium-plated, and will not rust even if it works in sea fog for a long time; various performance tests are carried out on the hydraulic cylinder test bench before leaving the factory; hydraulic pressure Cylinder seals can be of internationally renowned brands, such as British Hallite, or domestic CHINAMFG brands, such as ZheJiang 's DZ, etc. We can provide CCS classification society approval certificates.
                                                  
Customized service

We can offer OEM ODM service,please offer us below data:
Bore size;Stroke length;Rod Diameter;Mounting Type; Mounting length;Paint color requirement.

Specification

Production Process
More Product 

Application scenarios

Our company
HangZhou zhonghai marine Machinery Co., Ltd., formerly HangZhou Northern Shipping Engineering Co., Ltd., was established in 1997 and has experienced 26 years of development.

About Us
HangZhou Zhonghai Marine Machinery Co., Ltd. was established in 2008 with a registered capital of 5 million yuan. formerly HangZhou Northern Shipping Engineering Co., Ltd., was established in 1997 and has experienced 26 years of development.The company is a private enterprise and is located in Liuting New Building Materials Industrial Park, CHangZhou District, HangZhou City, ZheJiang Province. The company's production plant covers an area of 5,000 square meters. Its leading products include: marine Hydraulic systems of life-saving/rescue equipment, special equipment for shipyards; hydraulic cylinders, hydraulic winches, hydraulic pump stations, hydraulic control valve groups, high-pressure hoses, pipe joints, etc. At the same time, the company also undertakes projects such as hydraulic equipment maintenance, hydraulic cylinder maintenance, and non-standard design of hydraulic equipment. There are currently 45 employees. It has an automatic cylinder welding machine, a special cylinder test bench, a high-pressure hose cutting, stripping, crimping, flushing and bursting pressure test bench, CNC plasma, flame cutting machine, 20t gantry crane, vertical machining center, CNC lathe and general lathe, grinding machine , planing, milling, boring and other equipment.
The company now has a design and R&D space of 200 square meters, more than 10 sets of major scientific research equipment, 15 people with a college degree or above, and 13 technical staff. R&D tasks are formulated every year based on market and enterprise development.
The hydraulic cylinders and hydraulic winches produced by the company have obtained product certifications from CCS (China Classification Society), BV (Bureau Veritas), and DNV (Det Norske Veritas) respectively. The hydraulic systems, hydraulic cylinders, hydraulic winches and high-pressure hoses it produces are exported to the United States, Japan, South Korea, Singapore and other countries.

Honor certificate

Capacity of R&D Research
The company now has a design and R&D space of 200 square meters, more than 10 sets of major scientific research equipment, 15 people with a college degree or above, and 13 technical staff. R&D tasks are formulated every year based on market and enterprise development.

Team building 

Quality Control

1.We have a professional and senior design team and all specification is designed by professional engineers.

2.All product is processed by skilled workers and advanced CNC lathe.

3.All cylinders are 100% tested before package .

4.One year warranty and long time track service is offered to solve any problems of after sale.
5.We can provide China Classification Society certificate.
 

FAQ

Q1: Do you accept OEM/ODM manufacturing?

A1: Yes! We do accept OEM/ODM manufacturing.
      We will make the exact product according to your specification and drawing.
 

Q2: Could we get small quantity samples?

A2: Yes! We understand the quality test is important and we are glad to make the sample for you.
      The MOQ is 1 pcs.

Q3: How long is the production time?

A3: Generally the production time is 30 days. 

Contact us

Amy qiu

HangZhou Zhonghai Marine Machinery Co., Ltd.
Address:No. 37 Yuting Road, Liuting Street, CHangZhou District, HangZhou City

Mobile:

Certification: ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Structure: Piston Type
Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be integrated with advanced control systems and automation?

Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here's a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:

1. Electronic Control:

- Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.

2. Closed-Loop Control:

- Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.

3. Proportional and Servo Control:

- Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.

4. Human-Machine Interface (HMI):

- Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.

5. Communication and Networking:

- Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.

6. Automation and Sequential Control:

- By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.

7. Predictive Maintenance and Condition Monitoring:

- Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.

In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.

hydraulic cylinder

Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance

Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let's explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:

  1. Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
  2. Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
  3. Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
  4. Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
  5. Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.

In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.

hydraulic cylinder

How do hydraulic cylinders handle variations in load, pressure, and speed?

Hydraulic cylinders are designed to handle variations in load, pressure, and speed effectively. They incorporate features and components that allow them to adapt to changing operating conditions and maintain optimal performance. Here's a detailed explanation of how hydraulic cylinders handle variations in load, pressure, and speed:

Variations in Load:

- Hydraulic cylinders are capable of handling variations in load by adjusting the force they exert. The force output of a hydraulic cylinder is determined by the hydraulic pressure and the surface area of the piston. When the load increases, the pressure in the hydraulic system can be adjusted to generate a higher force. This adjustment can be achieved by regulating the flow of hydraulic fluid into the cylinder using control valves. By controlling the pressure and flow, hydraulic cylinders can adapt to different load requirements, ensuring that the force applied is sufficient to handle the load while preventing excessive force that could cause damage.

Variations in Pressure:

- Hydraulic cylinders are designed to handle variations in pressure within the hydraulic system. They are equipped with seals and other components that can withstand high-pressure conditions. When the pressure within the hydraulic system fluctuates, the hydraulic cylinder adjusts accordingly to maintain its performance. The seals prevent fluid leakage and ensure that the hydraulic pressure is effectively transmitted to the piston, allowing the cylinder to generate the required force. Additionally, hydraulic systems often incorporate pressure relief valves and other safety mechanisms to protect the cylinder and the entire system from overpressure conditions.

Variations in Speed:

- Hydraulic cylinders can handle variations in speed through the control of hydraulic fluid flow. The speed of a hydraulic cylinder's extension or retraction is determined by the rate at which hydraulic fluid enters or exits the cylinder. By adjusting the flow rate using flow control valves, the speed of the cylinder's movement can be regulated. This allows for precise control over the speed, enabling operators to adapt to varying speed requirements based on the specific task or load. Furthermore, hydraulic systems can incorporate flow control valves with adjustable orifice sizes to fine-tune the speed of the cylinder's movement.

Load-Sensing Technology:

- Advanced hydraulic systems may incorporate load-sensing technology to further enhance the ability of hydraulic cylinders to handle variations in load, pressure, and speed. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This technology ensures that the hydraulic cylinder provides the necessary force while optimizing energy efficiency. Load-sensing systems are particularly beneficial in applications where the load requirements can vary significantly, allowing hydraulic cylinders to adapt in real-time and maintain precise control over force and speed.

Accumulators:

- Hydraulic systems can also utilize accumulators to assist in handling variations in load, pressure, and speed. Accumulators store hydraulic fluid under pressure, which can be released when needed to supplement the flow and pressure in the system. When there are sudden increases in load or pressure demands, accumulators can provide additional fluid to the hydraulic cylinder, ensuring smooth operation and preventing pressure drops. Similarly, accumulators can assist in maintaining consistent speed by compensating for fluctuations in flow rate. They act as a supplemental energy source, helping hydraulic cylinders respond effectively to variations in operating conditions.

In summary, hydraulic cylinders handle variations in load, pressure, and speed through various mechanisms and components. They can adjust the force output to accommodate different load requirements by regulating hydraulic pressure. The seals and components within hydraulic cylinders allow them to withstand variations in pressure within the hydraulic system. By controlling the flow of hydraulic fluid, hydraulic cylinders can regulate the speed of their movement. Advanced technologies such as load-sensing systems and the use of accumulators further enhance the adaptability of hydraulic cylinders to changing operating conditions. These features and mechanisms enable hydraulic cylinders to maintain optimal performance and provide reliable force and motion control in a wide range of applications.

China high quality Inner Diameter Rolling or Honing and Polishing Processing Technology Hydraulic Cylinder   vacuum pump oil near me		China high quality Inner Diameter Rolling or Honing and Polishing Processing Technology Hydraulic Cylinder   vacuum pump oil near me
editor by CX 2023-12-13