Product Description

Product Description

Packaging & Shipping

PACKING:CARTON

DELIVERY TIME: 30DAYS.
 

Company Profile

 

HangZhou CHINAMFG IMP&EXP CO.,LTD. has been 1 of the fastest developing professional exporters in the field of Auto Maintenance Tools .We have over 13 years experience in terms of the research,product innovation ,marketing and the exportation based on the Auto Maintenance Tools,We have the customer in France, Poland, Argentina, Indonesia,Philippines, Chile, USA. etc.

We main supply like HYDRAULIC FLOOR JACKS,SHOP PRESS,FARM JACK, SCISSOR JACK,JACK STANDS, OIL DRAINER,STRUCT SPRING COMPRESSOR,PULL BACK RAM,TOOL BOX, etc.

The all manufacturers we cooperated, which we put quality in attention, as we wanna do is long term business relationship.

We can provide better price, well quality, good lead time, better service.

If you have any inquiry or need to find the products, do feel free to contact us!

Production Workshop

Exhibition

FAQ

1. who are we?
We are based in ZHangZhoug, China, start from 2008,sell to South America(15.00%),South Asia(15.00%),North America(10.00%),Northern Europe(10.00%),Western Europe(10.00%),Eastern Europe(10.00%),Oceania(5.00%),Southern Europe(5.00%),Africa(5.00%),Central America(5.00%),Southeast Asia(5.00%),Eastern Asia(5.00%). There are total about 11-50 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
HYDRAULIC BOTTLE JACKS,ENGINE CRANE,ENGINE STANDS,LONG FLOOR JACK,TRANSMISSION JACK,FENDER ROLLER REFORMING EXTENDING TOOL,HYDRAULIC CYLINDER RAM,etc.

4. why should you buy from us not from other suppliers?
HangZhou CHINAMFG IMP&EXP CO.,LTD. has been 1 of the fastest developing professional exporters in the field of Auto Maintenance Tools .We have over 13 years experience in terms of the research,product innovation ,marketing and the exportation.

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW;
Accepted Payment Currency:USD,EUR,CNY;
Accepted Payment Type: T/T,L/C;
Language Spoken:English,Chinese

After-sales Service: 1year
Warranty: 1year
Standard: Standard
Certification: CE
Condition: New
N.W: 30.5kg
Samples:
US$ 54/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How does a hydraulic ram contribute to efficient and powerful force generation?

A hydraulic ram utilizes specific design principles and mechanisms to generate efficient and powerful forces. Here's a detailed explanation:

1. Water Hammer Effect: The hydraulic ram harnesses the water hammer effect to generate powerful forces. When water flows into the ram during the drive phase, it gains velocity and momentum. As the water reaches a certain pressure threshold, the valve mechanism rapidly closes, creating a water hammer effect. This sudden closure of the valve generates a high-pressure pulse that propels a portion of the water to a higher elevation, producing a powerful force.

2. Momentum Transfer: The hydraulic ram efficiently transfers the momentum of flowing water to generate force. The momentum of the moving water is converted into mechanical work as the water hammer effect occurs. By utilizing the kinetic energy of the water, the hydraulic ram maximizes the efficiency of force generation.

3. Energy Recovery: One of the key features of a hydraulic ram is its ability to recover and reuse energy. As the water hammer effect occurs and the high-pressure pulse lifts a portion of the water, the remaining water in the ram's drive pipe decelerates. This deceleration allows the kinetic energy of the water to be converted back into potential energy, which can be used to pump a new cycle of water. This energy recovery mechanism enhances the overall efficiency of the hydraulic ram.

4. Mechanical Advantage: A hydraulic ram incorporates mechanical advantage through its design. The valve mechanism and other components are optimized to multiply the force generated by the water hammer effect. By leveraging mechanical advantage, the hydraulic ram can produce a more powerful force output compared to the input force from the flowing water.

5. Self-Sustaining Operation: A hydraulic ram operates in a self-sustaining manner, requiring minimal external power sources. Once the ram is set up and primed with water, it can continue to operate using the energy of flowing water. This self-sustainability contributes to the efficiency of force generation, as it eliminates the need for continuous external energy input.

6. Simple and Robust Design: The design of a hydraulic ram is relatively simple and robust, enabling efficient force generation. The absence of complex components reduces friction and energy losses. Additionally, the robust design ensures durability and long-term reliability, making hydraulic rams suitable for various applications.

Through the water hammer effect, momentum transfer, energy recovery, mechanical advantage, self-sustaining operation, and a simple yet robust design, a hydraulic ram maximizes the efficiency and power of force generation. These features make hydraulic rams an effective and reliable choice for pumping water and harnessing hydraulic power.

hydraulic cylinder

How does a hydraulic ram contribute to energy-efficient force generation?

A hydraulic ram plays a significant role in energy-efficient force generation. Here's a detailed explanation:

1. Force Multiplication: One of the key advantages of a hydraulic ram is its ability to multiply force. Hydraulic rams utilize the principle of Pascal's law, which states that pressure exerted on a fluid in a confined space is transmitted equally in all directions. By applying a relatively small force to a small piston or plunger, hydraulic rams can generate a significantly larger force at a larger output piston or plunger. This force multiplication allows for the efficient generation of high forces with relatively low input forces, resulting in energy savings.

2. Power Transmission: Hydraulic rams are part of a hydraulic system that efficiently transmits power from a prime mover, such as an electric motor or an internal combustion engine. The hydraulic system uses pressurized fluid to transmit power through pipelines to the hydraulic ram. The fluid acts as a medium to transfer energy from the prime mover to the ram. Hydraulic systems have high power transmission efficiency, minimizing energy losses during power transfer. This efficiency contributes to energy-efficient force generation in hydraulic rams.

3. Variable Force and Speed Control: Hydraulic rams offer the ability to control and adjust the force and speed of operation. By regulating the flow of hydraulic fluid into the ram, the force exerted by the ram can be precisely controlled. This allows for matching the force output to the specific requirements of the task at hand, avoiding unnecessary energy consumption. Additionally, the speed of the ram can be adjusted by controlling the flow rate of the hydraulic fluid. By optimizing the force and speed of operation, hydraulic rams ensure energy-efficient force generation.

4. Regenerative Energy: Hydraulic systems can incorporate regenerative circuits to capture and reuse energy that would otherwise be wasted. Regenerative circuits allow the hydraulic fluid, which carries potential energy, to flow back into the system after completing a task. This energy can be stored or redirected for future use, reducing the overall energy consumption of the hydraulic system. By implementing regenerative circuits, hydraulic rams contribute to energy efficiency by harnessing and recycling energy that would have otherwise been dissipated.

5. Compact Design and Light Weight: Hydraulic rams are compact and lightweight compared to other force generation mechanisms. Their compact design reduces the amount of material required for construction, resulting in lower energy consumption during the manufacturing process. The lightweight nature of hydraulic rams also contributes to reduced energy requirements for transportation and installation. The combination of compact design and light weight makes hydraulic rams an energy-efficient choice for force generation in various applications.

6. System Integration: Hydraulic rams can be easily integrated into complex hydraulic systems, allowing for efficient overall system design. The integration of hydraulic rams with other components, such as valves, pumps, and accumulators, enables precise control and optimization of the force generation process. Proper system design and integration ensure that hydraulic rams operate at their highest efficiency, minimizing energy waste and maximizing force generation capabilities.

In summary, hydraulic rams contribute to energy-efficient force generation through force multiplication, efficient power transmission, variable force and speed control, regenerative energy utilization, compact design and light weight, as well as system integration. These features make hydraulic rams a preferred choice in applications where energy efficiency and precise force generation are essential.

hydraulic cylinder

How does a hydraulic ram handle variations in hydraulic pressure?

A hydraulic ram is designed to handle variations in hydraulic pressure through the use of specific components and mechanisms. Here's a detailed explanation:

1. Air Vessel: The air vessel, also known as the air chamber or air dome, is a crucial component in a hydraulic ram. It contains compressed air, which acts as a cushioning medium. When the hydraulic ram is in operation, variations in hydraulic pressure cause fluctuations in water flow. The air vessel absorbs these pressure fluctuations by compressing or expanding the air inside it. This helps maintain a more constant and steady flow of water through the ram.

2. Valve Mechanism: The valve mechanism in a hydraulic ram plays a significant role in handling variations in hydraulic pressure. During the drive phase, the valve opens, allowing water to enter the ram. As the water flows in, it gains velocity and momentum. When the hydraulic pressure reaches a certain threshold, the valve closes rapidly, creating a water hammer effect.

This water hammer effect generates a high-pressure pulse that lifts a portion of the water to a higher elevation. The valve opening and closing are controlled by the pressure differentials and the design of the valve mechanism. This mechanism helps regulate and stabilize the hydraulic pressure within the ram, enabling it to handle variations in pressure.

3. Waste Valve (Optional): Some hydraulic ram designs incorporate a waste valve. The waste valve serves as a safety mechanism to handle excessive pressure build-up. If the pressure inside the ram becomes too high, the waste valve opens, allowing excess water or air to escape. This prevents damage to the hydraulic ram and ensures its safe operation.

4. Seals and Gaskets: Seals and gaskets are essential components that prevent leakage of water or air from the hydraulic ram. They help maintain the necessary pressure differentials and ensure that variations in hydraulic pressure are effectively managed. By preventing leaks, the seals and gaskets contribute to the overall efficiency and performance of the hydraulic ram.

By utilizing these components and mechanisms, a hydraulic ram can effectively handle variations in hydraulic pressure. The air vessel, valve mechanism, optional waste valve, and sealing elements work together to maintain a stable flow and prevent damage to the ram, ensuring its reliable and efficient operation.

China Hot selling Long 10 Ton Hydraulic Pull Back RAM for Porta Power Body Shop Frame Tool   vacuum pump and compressor	China Hot selling Long 10 Ton Hydraulic Pull Back RAM for Porta Power Body Shop Frame Tool   vacuum pump and compressor
editor by CX 2023-12-15