Product Description

3" Auto Carlift Hydraulic Cylinders for Car Lift Repairing

Can make as per clients drawing or sample
Advantages: 

1. Easy field repair, simply remove the snap-ring Seal kits can be replaced
2. 100%tested high pressure before shipping to make sure high quality.
3. Piston inside for long term using
4.3000PSI seal kits 
5. Standard SAE 8#
6. Hard chrome-plated rod 
7.Precision welded piston 
8.Color: Black plaint/ Red Paint etc

Can make as per OEM drawing or samples.
Product pictures:

GD are experts in making tie rod hydraulic cylinders, welded hydraulic cylinders and OEM hydraulic cylinders as per clients' request.
GD tie rod hydraulic cylinders are Double Acting Tie-Rod heavy duty design and are  installed in light to medium duty applications and are generally designed to be repaired or re-packed if necessary. These cylinders are made for using in mobile equipment of agriculture, recycling, forestry and construction. Tie-Rod cylinders provide great value without sacrificing efficiency. Rod chromed and some Nitriding treatment for different conditions, ductile iron clevis ends, and quality seals make sure GD rod hydraulic cylinders to work in extreme conditions. 100% tie-rod cylinders are put through testing before its release.
GD Welded Hydraulic Cylinders Cross Tube Style and Clevis Style are typically a better solution due to their compact design. The product created for use in various types of mobile equipment of waste, recycling, construction, transportation, agriculture, material handling, etc. It's rigid welded construction, high tensile welded steel end mounts, threaded gland and top quality seal components make sure Hydraulics' cylinders to work in hard conditions. All cylinders are fully and easily maintainable and repairable. Each cylinder is pressure tested at 150% of its working pressure.
GD provide custom made hydraulic cylinders besides rigorous industry standards. GD experienced technicians and engineers work seamlessly together channeling all efforts towards producing quality cylinders for use in any environment. The engineering utilizes software of CAD, UL for design.  High strength material is used to be sure the cylinder quality. Our skilled team of machinists and welders then take the project through the build, with attention to precise tolerances and quality procedures. The final product is assembled and tested in a way that ensures that it is 100% ready for the application it was designed for. Final painting and preparation for shipping are done with care so it arrives at the job ready for work.GD OEM cylinders are various of different materials and types : Stainless steel hydraulic cylinders, Sensor control, Valve  Integrated, Conjoined, steering, Top-link, Telescopic and double rod hydraulic cylinders.

GD Factory do 100% test for each process. We make sure the high qulaity for clients.

Welcome to contact us with your request. Our R&D can design for you as per your specifications for your machine.

If you are looking for custom hydraulic cylinders, you are welcome to send your drawings.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: RoHS, CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

hydraulic cylinder

What safety considerations are important when working with hydraulic rams?

Working with hydraulic rams requires careful attention to safety to prevent accidents and ensure the well-being of personnel. Here's a detailed explanation of important safety considerations:

1. Pressure Hazards: Hydraulic rams operate under high pressure, which can pose significant hazards if not properly managed. It is crucial to follow manufacturer guidelines and industry standards regarding maximum pressure limits. Pressure relief valves should be installed to prevent overpressurization, and pressure gauges should be used to monitor the system's pressure levels.

2. Personal Protective Equipment (PPE): Workers involved in the operation or maintenance of hydraulic rams should wear appropriate personal protective equipment. This may include safety glasses, gloves, protective clothing, and steel-toe boots. PPE helps protect against potential hazards such as hydraulic fluid leaks, flying debris, or accidental contact with moving parts.

3. Lockout/Tagout Procedures: Before performing any maintenance or repair tasks on a hydraulic ram, proper lockout/tagout procedures must be followed. This involves isolating the hydraulic system from its power source, de-energizing the equipment, and securing it with lockout devices or tags to prevent unintentional startup. Lockout/tagout procedures ensure that the ram remains in a safe and non-operational state during maintenance activities.

4. Training and Competence: Only trained and competent personnel should operate or work on hydraulic rams. Proper training ensures that individuals understand the safe operating procedures, potential hazards, and emergency protocols associated with hydraulic systems. Competent workers are familiar with the equipment's limitations, maintenance requirements, and troubleshooting techniques.

5. Inspection and Maintenance: Regular inspection and maintenance of hydraulic rams are essential for safety. Components should be inspected for signs of wear, leaks, or damage. Any identified issues should be promptly addressed to prevent potential failures or accidents. Maintenance tasks should be performed following manufacturer recommendations and industry best practices.

6. Fluid Handling: Hydraulic fluid used in rams can be hazardous. It is important to handle hydraulic fluid with care, avoiding skin contact or ingestion. Spills should be cleaned up promptly, and proper waste disposal procedures should be followed. Material Safety Data Sheets (MSDS) provided by the hydraulic fluid manufacturer should be consulted for specific handling and disposal guidelines.

7. Risk Assessment: Before working with hydraulic rams, a thorough risk assessment should be conducted to identify potential hazards and implement appropriate safety measures. This assessment should consider factors such as system pressure, equipment stability, environmental conditions, and human factors. Mitigation strategies should be implemented to minimize risks and ensure a safe working environment.

By adhering to these safety considerations, including managing pressure hazards, using appropriate PPE, following lockout/tagout procedures, providing training and competence, conducting regular inspection and maintenance, handling fluids safely, and performing risk assessments, the risks associated with working with hydraulic rams can be effectively mitigated, promoting a safe working environment for all personnel involved.

hydraulic cylinder

How does a hydraulic ram contribute to energy-efficient force generation?

A hydraulic ram plays a significant role in energy-efficient force generation. Here's a detailed explanation:

1. Force Multiplication: One of the key advantages of a hydraulic ram is its ability to multiply force. Hydraulic rams utilize the principle of Pascal's law, which states that pressure exerted on a fluid in a confined space is transmitted equally in all directions. By applying a relatively small force to a small piston or plunger, hydraulic rams can generate a significantly larger force at a larger output piston or plunger. This force multiplication allows for the efficient generation of high forces with relatively low input forces, resulting in energy savings.

2. Power Transmission: Hydraulic rams are part of a hydraulic system that efficiently transmits power from a prime mover, such as an electric motor or an internal combustion engine. The hydraulic system uses pressurized fluid to transmit power through pipelines to the hydraulic ram. The fluid acts as a medium to transfer energy from the prime mover to the ram. Hydraulic systems have high power transmission efficiency, minimizing energy losses during power transfer. This efficiency contributes to energy-efficient force generation in hydraulic rams.

3. Variable Force and Speed Control: Hydraulic rams offer the ability to control and adjust the force and speed of operation. By regulating the flow of hydraulic fluid into the ram, the force exerted by the ram can be precisely controlled. This allows for matching the force output to the specific requirements of the task at hand, avoiding unnecessary energy consumption. Additionally, the speed of the ram can be adjusted by controlling the flow rate of the hydraulic fluid. By optimizing the force and speed of operation, hydraulic rams ensure energy-efficient force generation.

4. Regenerative Energy: Hydraulic systems can incorporate regenerative circuits to capture and reuse energy that would otherwise be wasted. Regenerative circuits allow the hydraulic fluid, which carries potential energy, to flow back into the system after completing a task. This energy can be stored or redirected for future use, reducing the overall energy consumption of the hydraulic system. By implementing regenerative circuits, hydraulic rams contribute to energy efficiency by harnessing and recycling energy that would have otherwise been dissipated.

5. Compact Design and Light Weight: Hydraulic rams are compact and lightweight compared to other force generation mechanisms. Their compact design reduces the amount of material required for construction, resulting in lower energy consumption during the manufacturing process. The lightweight nature of hydraulic rams also contributes to reduced energy requirements for transportation and installation. The combination of compact design and light weight makes hydraulic rams an energy-efficient choice for force generation in various applications.

6. System Integration: Hydraulic rams can be easily integrated into complex hydraulic systems, allowing for efficient overall system design. The integration of hydraulic rams with other components, such as valves, pumps, and accumulators, enables precise control and optimization of the force generation process. Proper system design and integration ensure that hydraulic rams operate at their highest efficiency, minimizing energy waste and maximizing force generation capabilities.

In summary, hydraulic rams contribute to energy-efficient force generation through force multiplication, efficient power transmission, variable force and speed control, regenerative energy utilization, compact design and light weight, as well as system integration. These features make hydraulic rams a preferred choice in applications where energy efficiency and precise force generation are essential.

hydraulic cylinder

What are the components and parts of a hydraulic ram?

A hydraulic ram consists of several key components and parts. Here's a detailed explanation:

1. Drive Pipe: The drive pipe is the inlet pipe through which the flowing water enters the hydraulic ram. It is connected to a water source, such as a stream or a river, and carries the water that provides the energy for the hydraulic ram.

2. Delivery Pipe: The delivery pipe is the outlet pipe through which the water is pumped to the desired destination at a higher elevation. It carries the lifted water away from the hydraulic ram.

3. Valve: The valve controls the flow of water within the hydraulic ram. It is responsible for allowing the water to enter the ram during the drive phase and closing to create the water hammer effect during the delivery phase. The valve's opening and closing are crucial for the hydraulic ram's operation.

4. Air Vessel: The air vessel, also known as the air chamber or air dome, is a chamber that contains compressed air. It acts as an accumulator and helps maintain a constant flow of water by absorbing pressure fluctuations during the operation of the hydraulic ram. The compressed air in the air vessel provides a cushioning effect and contributes to the overall efficiency of the ram.

5. Waste Valve: Some hydraulic ram designs include a waste valve. The waste valve is an optional component that allows excess water or air to escape from the hydraulic ram if the pressure becomes too high. It helps protect the ram from damage caused by excessive pressure build-up.

6. Seals and Gaskets: Seals and gaskets are essential components that prevent leakage of water or air from the hydraulic ram. They ensure the proper functioning and efficiency of the ram by maintaining the necessary pressure differentials and preventing loss of energy.

7. Frame and Mounting: The hydraulic ram is typically housed within a sturdy frame or housing that provides support and protection for the components. The frame also serves as a mounting point for installation, securing the ram in the desired location.

8. Control Mechanism (Optional): Some hydraulic ram systems may incorporate a control mechanism, such as a lever or float, to regulate the operation of the ram. This mechanism allows manual or automatic control over the valve opening and closing, providing additional flexibility and adjustability.

These components work together to enable the hydraulic ram to harness the energy of flowing water and pump a portion of that water to a higher elevation without the need for external power sources.

China manufacturer Car Lift Hydraulic Cylinder Hydraulic RAM for Auto Carlifts   vacuum pump ac system	China manufacturer Car Lift Hydraulic Cylinder Hydraulic RAM for Auto Carlifts   vacuum pump ac system
editor by CX 2023-12-29